IT UNIVERSITY OF COPENHAGEN

Modifying Multiplayer
Networking in Godot: A
Collaborative Exploration

with Chasing Carrots

Fabio Mangiameli

Individual Project

M.Sc. Games Tech Track
IT University of Copenhagen
Denmark

15th December 2025

Abstract

This paper presents an individual project carried out in collaboration
with the independent game studio Chasing Carrots, focusing on the mod-
ification of multiplayer networking in the Godot game engine. The work
investigates whether a custom networking layer can provide greater flexi-
bility than Godot’s built in Multiplayer API while maintaining correctness
and functionality. To achieve this, the project refactors existing network
code to interact directly with the MultiplayerPeer and introduces a cus-
tom Communication Line System designed to better support the studio’s
modular workflow. In addition, the report explores the implementation
of full peer to peer network meshes using both ENet and Epic Online
Services, enabling direct client to client communication while preserving
an authority based model. The new architecture was integrated into the
studio’s production codebase and evaluated through targeted test projects
and internal play sessions. Results show that the custom system success-
fully replaces Godot’s default multiplayer framework, supports multiple
concurrent network meshes, and improves flexibility for features such as
proximity voice chat. While the solution introduces additional complex-
ity and requires further stability testing, it demonstrates that a tailored
networking layer can better align with the needs of a professional game
development workflow.

Contents
1 Introduction
2 Chasing Carrots

3 Related Work
3.1 Godot Game Engine L Lo
3.2 Multiplayer Technologies
321 ENet.
3.2.2 Epic Online Services

4 Customizing Godot for Studio Workflow
4.1 Composite Node System,
4.2 Current Multiplayer Architecture
4.3 Communication Line System

5 Network Code Refactor
5.1 Networking implementation in Godot
5.2 Transitioning to the Communication Line System

6 Network Mesh Implementation
6.1 ENet Network Mesh
6.2 EOS Network Mesh

7 Evaluation

8 Conclusion

13
13
15

18
19
21

25

26

1 Introduction

This individual project was both an exploration into the work of an indie game
studio and a deeper look into networking code in video games, including de-
velopment with Godot. The two main focuses were becoming familiar with
the general workflow and the tools used at Chasing Carrots, and developing
an internal project that improves their flexibility in multiplayer development.
A large part of this involved learning how the studio works with their custom
Godot Engine build and the systems they have created to support their own
games. The internal project centred around modifying the Godot networking
layer to give Chasing Carrots more control during development. This project
had two primary goals. First, the studio wanted to reduce reliance on the stan-
dard MultiplayerAPI [16] provided by Godot and instead work more directly
with the underlying MultiplayerPeer [17]. Typically, the MultiplayerAPI
wraps the peer and provides an easy way to send data between clients. While
this system is simple to use, it also requires the MultiplayerSpawner [18] and
MultiplayerSynchronizer [19] to function correctly. Chasing Carrots does
not want these objects in their workflow, so the goal was to achieve a more
flexible and direct interaction with the MultiplayerPeer without the extra
systems that Godot expects by default. This raises the question: Can a custom
networking layer provide greater flexibility than Godot’s built-in Multiplayer-
A PI without sacrificing correctness and functionality?

The second focus was on implementing a network mesh for communication. The
current setup uses a client-to-server peer-to-peer structure, where each client
connects only to the server. Clients are not directly connected to each other.
This means that if one client wants to send a packet to another, the server must
act as a relay. In a mesh network, all clients are connected to each other via
peer-to-peer links. There is still one client acting as the server because this
is needed for game initialisation, spawning logic, and general ownership of the
game state. However, the mesh makes certain features much more efficient. A
good example is the proximity voice chat used in the new project at Chasing
Carrots. Audio packets do not need to take an extra hop through the server
and can instead be sent directly between clients, improving latency and reducing
server load.

Overall, while this project provided a look behind the curtain at how a pro-
fessional environment develops games, it was also a hands-on exploration of
multiplayer systems, custom networking solutions, and the use of different net-
work technologies to enable smooth and responsive gameplay.

2 Chasing Carrots

Chasing Carrots is an independent game studio based in Stuttgart, in the south
of Germany. It was founded in 2011 and released its first game, Pressure [25],

in March 2013. Pressure is a twin-stick shooter where you control a car driving
through hordes of enemies, fighting your way to the end of each level. The next
game, Cosmonautica [26], was released in 2015. It is a spaceship management
game that combines humour with trading and crew simulation. After that, the
studio developed a remake of Pressure called Pressure Overdrive [27], which
came out in 2017. Pressure Overdrive was a complete overhaul featuring en-
hanced graphics, improved controls and much more content. It was also brought
to the Nintendo Switch. After that, the studio focused on a new project called
Good Company [29], released in 2022. This game marked a return to manage-
ment gameplay. In Good Company, your task is to build a business, manage
your employees and earn as much money as possible. Following Good Company,
Chasing Carrots released their most successful game so far: Halls of Torment
[28]. Inspired by Vampire Survivors [31], it is a bullet haven game that entered
early access in 2023 and was fully released in 2024. It was also the studio’s
first title developed using Godot, which helped establish Chasing Carrots as a
well-known developer in the Godot community.

While development on Halls of Torment is still ongoing, with a console release
just a few months ago, the studio is now focusing on a new game which is also
the reason for this individual project. Inspired by games like Lethal Company
[33] and Phasmophobia [30], this upcoming title will offer a cooperative expe-
rience where up to four players can explore the harsh and frozen environment
of Antarctica together. In the game, you play as part of a team of explorers
travelling across the icy desert in a massive land cruiser. The cruiser serves as
a hub where players can navigate, store items and warm up to avoid freezing
to death. However, it needs constant maintenance and can break down if dam-
aged, so players should drive carefully. The main goal of the expedition is to
discover anomalies. These can be portals to other worlds, points of interest in
the landscape or dangerous encounters. Valuable items and essential data can
be found near these anomalies, which players must collect and extract safely.
The game is planned for early access release in 2026 and is currently in the
middle of development.

3 Related Work

Back in 2022, Chasing Carrots decided to swap their tech stack. While Good
Company was developed with Unity, the studio decided to create Halls of Tor-
ment with Godot. Because the development was going quite well, they are
also sticking with it for the next project. Therefore, the following section will
describe the different technologies the studio interacts with during the develop-
ment.

3.1 Godot Game Engine

Godot is an open-source game engine [9] that was first released as a stable
version on December 15, 2014 [11]. Juan Linetsky and Ariel Manzur originally
developed it with the goal of creating a fully open, community-driven engine that
empowers developers to build games without restrictive licensing models or rev-
enue sharing. In contrast to many commercial engines, Godot is and will remain
completely free, both in price and in freedom, under the permissive MIT license
[12]. Technically, Godot is written in modern C++ and uses a unique node- and
scene-based architecture. Game content is structured as trees of Nodes, each
with a specific function, making projects highly modular, reusable, and easy to
reason about. This design enables developers to compose complex behaviour out
of simple building blocks, reducing both boilerplate and development time. To
support rapid iteration, Godot provides its own high-level scripting language,
GDScript. Tailored specifically to the engine, GDScript offers Python-like syn-
tax, tight editor integration, and extremely fast iteration cycles since it does
not require recompilation after changes. In addition to GDScript, the engine
also supports C# and native code through C and C++. For teams like Chasing
Carrots, Godot’s extensibility is one of its most valuable characteristics.

There are four main options to modify the engine to personal preferences:

Plugins The first way of modification is plugins. Using GDScript or C#, de-
velopers can create tools, Ul panels, importers, and automation features directly
inside the editor. These add-ons can be shared through the Godot Asset Library
or by sharing the source code and require no native compilation, making them
easy to distribute and maintain. [14]

GDExtension system Another way to create plugins is to use the Godot
GDExtension system [22]. GDExtensions are written in C++ and interface di-
rectly with the engine’s core API. Developers can implement custom systems,
bindings, or gameplay features and distribute them as platform-specific libraries.
This allows teams to add highly performant native functionality without modi-
fying the engine itself.

Modules Modules [2] sit one level deeper than extensions: they are compiled
directly into the engine source but remain separated from core systems. This
enables parallel development. Teams can maintain custom modules while still
updating to new engine versions with relatively low merge overhead. Modules
are ideal for systems that require tight engine integration.

Direct Engine Modification As a fully open-source project [9], Godot al-
lows developers to modify any part of the engine codebase. While this grants

complete control, it may lead to merge conflicts when updating to new ver-
sions, especially since Godot’s architecture evolves significantly between major
releases.

This project will place particular emphasis on the use of modules and GDEx-
tensions. Since the studio already uses a modified engine version that employs
a so-called CompositeNodeSystem implemented in modules. GDExtensions
will be discussed in greater detail later, as an extension [13] was used for Epic
Online Services (EOS) [7], which had to be modified to enable the use of multiple
network meshes.

Godot also features built-in networking support suitable for real-time multi-
player games. Its multiplayer architecture revolves around the Multiplayer-
Peer class, an abstract interface that can be implemented in C++ or accessed
through GDScript. The engine provides a default implementation using ENet
called ENetMultiplayerPeer, a reliable UDP-based networking library well-
suited for fast-paced gameplay. Developers may also create custom peers to
integrate external networking backends such as the FOSGMultiplayerPeer
implemented to use EOS for example [13].

Beyond its technical capabilities, Godot benefits from an active and rapidly
growing community. The engine’s open governance model encourages contribu-
tions from studios, hobbyists, and industry professionals alike. Extensive docu-
mentation, tutorials, and community plugins help support newcomers, while reg-
ular releases continue to introduce renderer improvements, performance gains,
new tooling, and expanded platform support.

3.2 Multiplayer Technologies

Chasing Carrots utilizes two network technologies: ENet and Epic Online ser-
vices [4] [7]. The ENetMultiplayerPeer is primarily used for debugging, since
setting up a connection is faster than with EOS. With EOS, a connection must
first be initialised on the EOS servers, and testing with multiple instances re-
quires an additional EOS authoring tool [23]. EOS will be the main technology
palyers will interact with when the game is shipped, because it handles on-
line functionality such as matchmaking, lobbies, and cross-platform support. In
comparison, ENet is more lightweight and allows quick local testing with several
instances of the game running on the same machine. Another advantage is that
ENet can always be used on a local network to enable multiplayer gameplay
without relying on any external service. EOS depends heavily on Epic Games,
and Chasing Carrots cannot assume that these online services will always be
available or fit every development scenario. Because of this, time is invested in
supporting both technologies.

3.2.1 ENet

In the backbone of the default Godot multiplayer framework lies the ENet C++
library [4]. It is an open source networking library built on top of the User
Datagram Protocol (UDP) [24]. ENet was initially developed for the game
Cube [32] as its UDP network layer. The main idea behind ENet was to create
a network layer that combines beneficial properties of both Transmission Control
Protocol (TCP) [3] and UDP. To achieve this, a uniform protocol was designed
that sits on top of UDP and adds features such as optional reliability, packet
ordering, channels, and automatic packet fragmentation. Godot integrates ENet
by exposing it through the ENetMultiplayerPeer. This makes it easy to
create connections, send packets, and manage peers without interacting with
the ENet library directly.

3.2.2 Epic Online Services

As the name suggests, Epic Online Services [7] is a collection of online services
that provide networking features to developers. Epic Games developed EOS
and offers it free of charge to all users. The services include features such as
matchmaking, voice chat, user authentication, friends and presence systems, and
anti-cheat integration. EOS is designed to support cross-play across platforms,
enabling players on PC and consoles to play together seamlessly. Epic Games
provides an SDK that allows developers to integrate EOS into their own games.
To integrate EOS into Godot, Chasing Carrots uses an open source extension
called Epic Ounline Services Godot (EOSG)[13]. This extension communicates
with the official EOS API and exposes its functionality through GDScript. It
also offers a custom EOS peer called EOS G MultiplayerPeer that can be used
the same way as the ENetMultiplayerPeer. This makes switching between
the two technologies straightforward and allows the team to test both solutions
without changing the rest of the networking logic.

4 Customizing Godot for Studio Workflow

Chasing Carrots has been working with the Godot Game Engine since the devel-
opment on Halls of Torment began in 2022. The team originally picked Godot
out of curiosity and built prototypes with it to see how it felt. Since those
early experiments went well, the studio shifted more and more of its workflow
toward Godot and away from Unity. Cost played an important role, too. Unity
requires a paid plan for studios, while Godot is completely free to use and fully
open source. When Unity made headlines in September 2023 because of its
new pricing policy [8], it confirmed the studio’s decision to move on. By that
time, Halls of Torment had already proven itself in early access, and it became
clear that the team had chosen the right tool for the job. One of Godot’s most
significant advantages, as with many open-source projects, is how easy it is to

modify. Chasing Carrots maintains its own fork [1] of the official Godot repos-
itory [9]. The goal is to stay as close as possible to the latest engine version
while still allowing integration of custom changes. When necessary, the team
cherry-picks experimental updates from the main Godot repository, especially
when a feature is needed sooner rather than later. On top of that, they add
their own features whenever the engine is missing something essential.

The following section will take a closer look at how the studio works, with a par-
ticular focus on how the Godot engine fits into their development process. The
following section focuses specifically on the modifications the studio has made
to the Godot engine to support a more modular development style. It does
not deal with the studio’s broader working environment or the additional tools
used in day-to-day production. Version control systems, project management
software, and internal communication are therefore not part of the discussion.
All the following modifications were implemented with the Godot engine mod-
ule system. Consequently, it was written directly in Godot’s source code and
requires a custom build to use the changes in the editor.

4.1 Composite Node System

Composite Node

reglster callbacks
gisker function
save daia values

e 1 Composite Node Module |

—W-h‘l Composite Node Ualue}—~
TI‘I.E Composite Node Value}—~
+ 2. Composite Node Module |

f————
reference
e |2.‘I Composite Mode Value}—-

—aierenes 7 3- Composite Node Module |

Figure 1: Example of the Composite Node System

As mentioned earlier, Godot organises its game objects in a tree structure, where
every object inherits from the base class Node. To support more modular de-
velopment, Chasing Carrots introduced a new type called CompositeNode.
These Nodes can store data, create functions, or register callbacks, making
them highly flexible building blocks for game logic. Figure 1 illustrates a typical
use case for the CompositeNode system. The three main classes involved are
CompositeNode, CompositeNodeModule, and CompositeNode Value. It

extends CompositeNodeModule

var data : CompositeNodeValue
var synchronized_data : CompositeNodeValue
var inital_value : int = 0

func _ready_composite_node() -> void:

data = create_non_synchronized_value(&"Data", inital_value)

synchronized _data = create_synchronized_value(
& "SynchronizedData",
inital _value,
CompositeNode.OnChange,
CompositeNode.U32

register _function (&"PrintData", PrintData)

register _callback (&"DataPrinted", data_was_printed)

register _data_updated_callback(&"SynchronizedData", on._
synchronized_data_updated)

func _ready_authority() -> void:
Do something when the authority is set
pass

func PrintData() -> void:
print (data.value)
_composite_node.CallCallback (&"DataPrinted", [])

func data_was_printed(data: int) -> void:
Do something with the data after it was printed
pass

func on_synchronized_data_updated(new_data: int) -> void:
print (new_data)

Listing 1: Example implementation of a Composite Node Module in GDScript

is important to note that using the last two classes is optional. They are pro-
vided primarily as convenient helper classes. For example, a CompositeN-
odeModule automatically stores a reference to its parent Composite Node
and provides functions that can be overridden to run logic when the Node or
its authority is initialised. A CompositeNode can have multiple modules as
children, and it can also contain other CompositeNodes. In the figure, the
example CompositeNode has three modules as children. The first module
registers callbacks and functions on the CompositeNode, and it creates two
CompositeNode Values to store its data. The other two modules, however,
do not register functions or callbacks, and they do not need CompositeN-
odeValues. But they would be able to trigger the callback, call the function
or access the data registered on the CompositeNode by CompositeNode-
Module 1. This demonstrates the flexibility of the system. Modules can be
lightweight or fully featured depending on the needs of the project. A simple
example of a CompositeNodeModule implementation in GDScript is shown
in Listing 1. This illustrates the basic interactions with the CompositeNode
system. CompositeNode Values are created and stored on the module as vari-
ables within the _ready_composite_node() function. This function is called
once the parent CompositeNode has finished its own initialisation. In the ex-
ample, one value is synchronised, while the other is not. A synchronised value
automatically propagates changes to all clients, which is particularly useful for
multiplayer setups. In this case, an unsigned 32-bit integer is sent to every
client whenever the value changes. Functions and callbacks are also registered
in _ready_composite_node(). The function PrintData() is registered on the
CompositeNode and can be called by any object that holds a reference to it.
Chasing Carrots deliberately uses PascalCase for registered functions to distin-
guish them from normal functions written in snake_case. A function call looks
like this: _composite_node.CallFunction(&”PrintData”, []). Callbacks
work similarly. They trigger a provided function when called. In the exam-
ple, calling _composite_node.CallCallback(&”DataPrinted”, []) triggers
data_was_printed(data). Multiple Nodes can register for the same callback
to attach different logic. It is also possible to register a callback for a specific
data value that is triggered whenever the defined value changes. With regis-
ter_data_updated_callback(), that kind of callback can be registered on the
CompositeNode and is called whenever the data changes. This mechanism
allows logic to automatically run on clients when a value is updated by the au-
thority, streamlining multiplayer synchronisation. It is also worth noting that
all these function calls use StringName instead of regular strings. StringName
is a specialised Godot data type that treats two StringNames with the same
content as the same object. This enables extremely fast, efficient comparisons,
which is crucial when dealing with frequent callbacks and function calls [21].

10

Client 1

autharity

Cheracter Contmder Player I

Server
autharity|

Charactar Controbar Playss 1

Gama State

K o

o i

% ’}bc"@o'

&

a

Client 2 Client 3

autharity, autharity|
Chiarggiar Conbmder Payesr 3 Charssted Contraksr Maye 4

Figure 2: Client to Server visualisation

Figure 3:

autharity

Charscter Controles Ployer 3

11

Server
autharit
Character Controbes: Flayer |
Game Stals
o
2
=
&
=
5
o
Client 1 Client 3
connected
aulbarity] autharity]
Charecter Controles Blayer T Charscter Conirober Plager 4
faﬁb
o
Client 2

Network Mesh visualization

4.2 Current Multiplayer Architecture

Before this individual project began, the game already had a networking struc-
ture in place. The current setup follows a classic client-to-server model. Each
client is connected to one specific client that takes the role of the server, as
shown in Figure 2. The server is responsible for distributing all relevant data
to the clients that need it. Another essential part of the networking model is
the concept of authority. In the Godot MultiplayerAPI, every Node in the

SceneTree has exactly one client assigned as its authority. The authority is
usually the client that processes game logic or calculates new values for that
node. A typical example is the character controller. Each client has authority
over its own character controller, which means player input is processed locally.
The results are then sent to the server, which forwards them to the other clients.

Chasing Carrots wants to keep the authority system, but they also need direct
client-to-client communication. For this reason, the project aims to introduce
a network mesh. As shown in Figure 3, the idea of a server and authorities
remains the same, but all clients are also connected directly to one another. This
allows a client to send requests directly to another client without routing them
through the server. Direct communication reduces latency and can improve
responsiveness, especially in situations where many small updates need to be
exchanged.

4.3 Communication Line System

Inspired by the MultiplayerAPI used by Godot [16], Chasing Carrots devel-
oped its own system for transferring data between clients. The aim was to create
a lightweight system which directly communicates with the MultiplayerPeer.
Before this project, the CommunicationLineSystem used the Godot Mul-
tiplayer A PI itself. This is why one of the goals for this project was to remove
the functionality that relied on the MultiplayerAPI and directly access the
MultiplayerPeer. In this chapter, I will present the already modified version
of the CommunicationLineSystem (CLS) with the modifications I applied,
as this is the target architecture for this system.

ENetMultiplayerPeer

inharilts

MultiplayerPeer

EOSMultiplayerPeer

reference
trigger pailing

Communication
Line System

Leeste, 1 Communication Line [+2¢9<2] 11 CompositeNode

Late'| 2. Communication Line |
M{ 3. Communication Line |

LF"e-| 4. Communication Line |¢.§Lem£| 4.1 CompositeNode

Figure 4: Communication Line System Architecture

12

Figure 4 shows, how the CommunicationLineSystem is structured. The di-
agram illustrates how the CLS interacts with the MultiplayerPeer and how it
integrates with CompositeNodes. The framework allows multiple Commu-
nicationLineSystems to exist within a single application. Each CLS manages
its own set of CommunicationLines. In the game code, Communication-
Lines can be created wherever needed and can be used immediately. Remote
functions can be defined on these lines and will be executed on other clients
when triggered. This approach is inspired by Godot’s Remote Procedure Call
(RPC) system [16]. CommunicationLines also support check bits that can
filter remote calls. For example, a client can look up which peer carries the au-
thority bit mask and send the remote call only to that peer. This makes it easy
to route messages to specific clients with specific roles, such as the server. Every
CompositeNode automatically holds a CommunicationLine as a member
variable. This is necessary for registering synchronised data values, as described
in Section 4.1, and for invoking functions on the authority. However, Commu-
nicationLines are not restricted to Nodes. They can be created anywhere in
the codebase, even outside the SceneTree. This makes them more flexible than
Godot’s built-in MultiplayerAPI, which always requires a Node with access
to the API instance. CommunicationLines can also be used in RefCounted
objects [20], which opens the door for networking code that does not depend on
scene structure.

5 Network Code Refactor

One of the first takeaways from this project was getting a look at a professional
game development environment and seeing how an independent studio works
with Godot on a daily basis. The second major part of the learning process was
developing my own project inside the network code. This section explains how I
moved away from the built-in Godot MultiplayerA PI toward a system where
MultiplayerPeer ownership is handled entirely through the Communica-
tionLineSystem. Shifting this responsibility away from the engine and into
custom logic was an essential step because it enabled much greater control over
how authority, routing, and synchronisation are managed. Once that part was
working reliably, the next challenge was to implement complete network meshes
using both ENet and EOS. Through this project, I learned a lot about multi-
player synchronisation and different network architectures, and gained deeper
insight into ENet and Epic Online Services.

5.1 Networking implementation in Godot
Godot’s multiplayer architecture is shown in Figure 5. At the centre of this sys-

tem is the Multiplayer A PI, which can be implemented or replaced as needed.
The default implementation is SceneMultiplayer, which inherits from the base

13

ENetMultiplayerPeer
MultiplayerPeer 22t
EOSMultiplayerPeer
reference
MultiplayerAPl [————— SceneMultiplayer
reference trigger polling
Get Multiplayer
SceneTree o Node

Figure 5: Godot networking architecture

Multiplayer A PI and provides Godot’s built-in RPC system. Since develop-
ers are free to implement their own MultiplayerA PI, the framework is quite
flexible.

In our case, we decided not to build our own MultiplayerA PI, because we did
not want to use Godot’s RPC layer at all. Instead, we created a separate sys-
tem, which has already been touched upon in section 4.3 and will be discussed
in more detail in the next chapter (section 5.2), that works alongside Godot’s
architecture without relying on it. Below the API layer sits the Multiplay-
erPeer class. This is the part that handles the actual transport layer, and it
can be inherited from to integrate different networking technologies. Chasing
Carrots uses two implementations: the default ENetMultiplayerPeer, which
Godot provides [6], and the EOS G MultiplayerPeer, which is part of the open
source extension Epic Online Services Godot (EOSG) [13]. Thanks to Godot’s
system design, swapping peers is straightforward and does not require changes
to the game logic. For development, the ENetMultiplayerPeer is primarily
used because it is lightweight and easy to test with. Once the game is released,
the EOS peer will be the primary option for players, since it supports features
such as platform services, matchmaking and cross-platform connectivity.

Accessing the multiplayer system inside the game code is simple. Every Node
in Godot has access to the SceneTree, and the SceneTree holds a reference
to the currently active Multiplayer A PI. This means that any Node can call
networking functionality without needing global managers or additional infras-

14

tructure. It also allows developers to write and test networking logic directly
in GDScript in the editor, keeping iteration times short and making it easy
to experiment with new ideas. Godot integrates its networking features in the
same spirit as the rest of the engine: simple to set up and quick to use. As a de-
veloper, you can get something running over the network within minutes when
using the provided example code and documentation from Godot [10]. Writing
synchronised gameplay logic directly in GDScript feels natural and convenient.
However, the strength of this simplicity also becomes a limitation.

The built-in system does not scale well for more complex projects, as writ-
ing RPC calls in every script can get hard to maintain. It also relies heavily
on Godot-specific concepts such as the MultiplayerSpawner and the Mul-
tiplayerSynchronizer. These tools work well for small games, but they can
feel restrictive as a project grows or when the architecture requires greater con-
trol over how data flows through the network. For Chasing Carrots, this made
it clear that a custom networking layer would be a better long-term solution.
Building their own framework allowed them to shape the networking model
around the game rather than shaping the game around Godot’s networking
model. It also opened the door to cleaner modularity and custom authority
rules. In short, the decision to move away from the built-in system was not be-
cause Godot’s networking is bad, but because it is designed first for accessibility.
For a project of this scale and complexity, Chasing Carrots needed something
more specialised and flexible.

5.2 Transitioning to the Communication Line System

Figure 6: Test scene with red spheres as controllable objects

This section covers the first primary task of my project at Chasing Carrots.
The goal was to move from the networking architecture shown in figure 5 to the
new CommunicationLineSystem architecture shown in figure 4. My starting
point was a customised version of Godot 4.5 that already included several engine

15

)

1

modifications and a working networking setup, as described in section 4.2. The
custom engine changes are explained in section 4. With this as a foundation,
the first step was to build a small test project that mimicked the networking
layer used in the current prototype of Chasing Carrots’ upcoming title. The test
project included a lobby system, transitions between different game states, and
a set of debugging tools. To verify that data was still transferred correctly after
swapping out the underlying MultiplayerPeer, 1 created a dedicated testing
scene in Godot (figure 6). The scene included a straightforward player controller,
so I could immediately see whether the player’s input was synchronised correctly.
Each client can control one of the red spheres in the scene with six degrees of
freedom. The screenshot shows two connected clients, but the setup supported
up to four simultaneous players.

func _process(_delta: float) -> void:
if not _composite_node.IsAuthority():

return
var gametime : float = GameTime.GameTime
if gametime >= _next_update_gametime:
while gametime >= _next_update_gametime:

_next _update_gametime += 5.0

_U8_value.value = randi_range(0, 255)
_U16_value.value = randi_range (0, 65535)
_U32_value.value = randi()

_S8_value.value = randi_range(-128, 127)

_S16 _value.value = randi_range (-32768, 32767)
_S832_value.value = randi_range (-2147483648, 2147483647)
_HalfFloat _value.value = randf ()

_Float _value.value = randf ()

_Double_value.value = randf ()

_Vector2Type_value.value = Vector2(randf (), randf ())
_Vector3Type_value.value Vector3(randf (), randf (), randf())

Listing 2: Script function, which periodically sends data to clients

The scene also contained a script that periodically sent values of every supported
data type across the network. This allowed me to check whether any of them
failed to synchronise. Listing 2 shows how this was implemented. The script
extends a CompositeNodeModule, which gives it access to its Composite N-
ode and, through that, the CommunicationLine. Each assigned variable is
a synchronised CompositeNodeValue. The early return ensures that only
the CompositeNodes authority updates the values. Once a value changes,
the system triggers a remote update on all connected clients so they mirror the
data.

Figure 7 shows the debugging window that lists all synchronised values for each
client. This tool made it easy to spot mismatched data or missed updates.
Before starting the actual refactor, I made sure the old system was fully un-
derstood, fully functional, and behaving consistently. Only then did I begin

16

Figure 7: Debugging screen to see data synchronisation

modifying the networking layer itself.

The first changes had to be made inside the custom modules in the Godot source
code. These parts are written in C++. The CommunicationLineSystem
currently relies on the MultiplayerA PI to access the MultiplayerPeer and
stores a reference to the API. To remove this dependency, I added initialisation
functionality so the CommunicationLineSystem can store a direct reference
to the MultiplayerPeer. Normally, the MultiplayerA PI triggers the polling
of network data, so the CommunicationLineSystem needed its own function
to poll data. I reused the polling logic from Godot’s SceneMultiplayer and
removed the code that was not relevant. Because Chasing Carrots plans to
use a multiplayer mesh topology, the relay server features were not needed and
could be removed. I also removed parts of the code that were only required for
Godot’s built-in RPC system and the MultiplayerSynchronizer, since we no
longer use those features.

By default, the authority concept in Godot assigns a unique peer ID to a Node.
This value is synchronised across all clients, so each can compare the Nodes
authority ID with its own. Our new framework keeps the idea of authority but
adjusts how it is handled. The CommunicationLineSystem uses a bitmask
to filter requests and direct them to the correct peers. Because this bitmask
was already a core part of the system, we decided to use it to mark authority. 1
defined the first bit of the mask as the authority bit and updated the authority
initialisation code to set this bit instead of assigning a peer ID.

In Godot, every script that extends the Node class can access the Multiplayer-
API. This is used to check authority status or to retrieve the peer ID. With our

17

changes, the built-in helper functions, such as is_multiplayer_authority(), are
no longer valid. To replace them, I exposed new backend functions from C++ to
GDScript. These functions are accessible through the CommunicationLine
or the CompositeNode. The new authority check is called with communi-
cation_line.is_authority(). This triggers a check for the authority bit in the
bitmask and returns a boolean. I also implemented helper functions to retrieve
the unique ID of the peer with the authority bit set and a check if a peer is the
server.

Once the refactor was complete, I moved back to the test project. I cleaned
up the project and replaced every point where the old MultiplayerAPI was
used. This included authority and server checks, removing all RPC calls and
replacing them with remote calls over the CommunicationLine, and updat-
ing the initialisation process so that the correct MultiplayerPeer instance is
passed to the CommunicationLineSystem. I removed all references to Mul-
tiplayerSpawner and MultiplayerSynchronizer and replaced them with
logic built directly on top of the new system. After everything was updated and
the project was running again, I verified that data synchronisation still worked.
The periodically sent values from listing 2 were correctly synchronised, and all
red spheres in the test scene moved consistently for every client when receiving
player input.

6 Network Mesh Implementation

The implementation of the network meshes (figure 3) has several advantages
compared to the traditional client-server structure shown in figure 2. The most
important benefit is that clients can send packets directly to each other. This
reduces latency because data no longer needs to be routed through a server first.
Lower latency is especially useful for features like voice chat and the synchro-
nisation of player inputs, where fast and responsive communication matters a
lot. A downside of this approach is the increased complexity of setting up the
mesh. ENet and EOS both support peer-to-peer communication, but they han-
dle discovery and connection management in different ways. Because of this,
each backend needs its own implementation.

There is also a security aspect that should be mentioned. When clients can
send packets directly to other clients without a central authority validating the
data, the risk of cheating increases. A peer-to-peer system makes it easier for
a malicious user to manipulate the game state or send incorrect information.
In competitive or large-scale online games, studios usually invest a lot of effort
into server-side validation and anti-cheat systems to prevent this. In our case,
the upcoming title is a cooperative game that is mainly played with friends or
small groups. Because of this, the studio decided that adding complex anti-cheat
measures would not be worth the additional development time and maintenance.

18

6.1 ENet Network Mesh

1. creates

Client 1

vt as sl i 2. notify when initialized

3. connect SignallingServer

5 request open
ENE'[M E!Sh connection for Client 2

G. request open
connection for
Client 1
4. connect

Client 2

7. Client 1 & 2 connect
to each other

ENetMesh

Figure 8: ENet Mesh representation with numbered initialisation sequence

Documentation for implementing an ENet network mesh is very limited. The
only valuable source I found was a blog post about networking changes intro-
duced in Godot 4.0 [15]. The post included a simple example but relied on static
IP addresses hard-coded into the project. This makes the example unsuitable
for our use case, so several adjustments were required. The blog post also sug-
gests creating a signalling server. This server is responsible for distributing the
information that clients need in order to connect to one another. Since ENet
itself does not provide any discovery features, the signalling server becomes the
place where clients register, exchange their connection details and request mesh
links. To establish a peer-to-peer connection, each client has to create its own
ENetConnection instance [5]. The process works as follows:

1. Client 1 creates an ENet host.
2. Client 1 attempts to connect to an ENet host created on Client 2.

3. Client 2 creates its own host and binds it to the incoming connection
request from Client 1.

19

Once both sides have a host object and both hosts acknowledge the connec-
tion, ENet establishes a peer-to-peer link between the two machines. A key
requirement of this system is that each connection must use a dedicated port.
The IP addresses of both clients and an open port for the connection must be
known to the signalling server so it can communicate them to the peers. During
development, I tested whether a single port could be shared among multiple
ENetConnections within the same mesh. Debugging showed that this does
not work because ENet reports an error when a second host tries to bind to a
port that is already in use. This means that each connection in the mesh needs
its own port on both clients. At this stage, the peer-to-peer link exists only on
the ENet level. Godot’s MultiplayerPeer is not aware of it yet. To solve this,
I had to keep track of the ENet hosts that were created for each connection. I
implemented this using a simple host buffer, which is shown in listing 3.

func _process(_delta: float) -> void:
if multiplayer _peer:
for host_id in host_buffer:

var host : ENetConnection = host _buffer [host_id]

var event = host.service ()

if event [0] == host.EVENT_CONNECT:
Add host peer
multiplayer _peer.add_mesh_peer (int (host_id), host)

host _buffer.erase (host_id)

Listing 3: ENetMesh host management

Each host in this buffer represents one active ENet link. For Godot to recognise
the connection, each client needs to call add_mesh_peer(peer_id, host) on
its own MultiplayerPeer. This function takes the ENet host representing the
connection and the peer ID assigned to the remote client. Because of this, the
signalling server must provide the following information to each client:

e the IP address of the target client,
e the port that should be opened for the connection,

e the target peer’s unique ID to use inside the multiplayer system.

Once this data is available, the clients can create their ENet hosts, establish a di-
rect connection, and finally register each other via the add_mesh_peer(peer_id,
host) function call. This completes one link in the ENet network mesh.

Figure 8 shows the order in which an ENet mesh connection is established. I
implemented the signalling server by reusing the existing ENet client-to-server
structure that the studio already uses in the current networking architecture.
When a player creates a lobby, their client also starts the signalling server.
Once the signalling server has finished its initialisation, the client connects to

20

it. Because this is the first client to join, it is promoted to become the mesh
server. The mesh server has an important role, because it is responsible for
handling global game state, coordinating transitions such as starting the game
and managing any spawning logic. Even though the final mesh is peer-to-peer,
the project still needs one server to coordinate these high-level actions. The
signalling server generates a unique ID for every client that connects. It also
stores the client’s IP address so it can share this information with other peers
later. When a second client joins, it does not connect directly to Client 1.
Instead, it connects to the signalling server using the IP address of Client 1
and the defined port for the signalling server. Once Client 2 is connected, the
signalling server sends both clients the information needed to create their ENet
hosts. This includes the IP address of the other client and a port that should
be opened for the connection. The signalling server keeps track of all used ports
to prevent duplicates, because each ENet mesh link requires a dedicated port.
After both clients create their hosts and listen on their assigned ports, they
establish the actual ENet peer-to-peer connection. If a third client joins later,
the process repeats. The signalling server sends the new client the data for all
already connected clients. It also sends the existing clients the information for
the new one. With this, every client receives the correct IP address, port and
unique peer ID for each connection. All clients then create the missing ENet
hosts and establish the required mesh connections until every peer is linked
with every other peer. This process continues for all players who join the lobby,
resulting in a fully connected ENet mesh topology.

To verify that the mesh setup worked correctly, I used my test scene to check
whether all data was still synchronised and whether the behaviour matched
the previous client-server structure. Since the server relay functionality was
removed, the only way clients can communicate is by sending data directly to
each other. Because of this, I wrote a small piece of test code that sends a
message from one client directly to another. This can only succeed if the mesh
was created correctly on both sides. During the test, I was able to trigger a
remote call between two clients. This confirmed that the peer-to-peer links
were active and that my implementation of the network mesh was functioning
as intended (Appendix: A).

6.2 EOS Network Mesh

Once the ENet network mesh was working as intended, I moved on to imple-
menting the same system for Epic Online Services (EOS). The setup for an
EOS network mesh is shown in figure 9. EOS handles the process of establish-
ing connections between peers on its own, so there is no need for a separate
signalling server. Before a mesh connection can be set up, both clients must log
in to EOS and be fully initialised. EOS supports several login methods. For
internal testing, Chasing Carrots uses an anonymous login based on a device ID
generated automatically by EOS. This works well when testing with colleagues

21

1. Creates

Client 1

Elevated as mesh server 2. notify when initiallzed

3. connect SignallingServer

5 .request open

ENetMesh connection for Client 2
3

5
28¢ 4
4L 2
gE0| &
o g)

1)]
[75] ==

Client 2
7. Client 1 & 2 connect
to each other
ENetMesh

Figure 9: EOS Mesh representation with numbered initialisation sequence

in the studio. When I needed to test alone on my machine, I had to use the
authorisation tool provided by Epic Games [23]. The tool allows logging in
with whitelisted Epic Accounts in the studio’s EOS backend for development.
Without this tool, I would not have been able to simulate two separate clients
on one machine.

Once both clients are logged in and initialised, the mesh can be created. As
before, Client 1 starts a lobby, which automatically designates them as the server
in the mesh. EOS assigns a user ID to every logged-in client, which is used to
establish the connection. With the user ID of Client 1, Client 2 can begin the
connection process by calling add_mesh_peer(remote_user_id). The user
ID replaces the Peer ID and ENetConnection, which were needed for the
ENet Mesh in the section before. EOS distributes the request sent by Client
2 to Client 1. Client 1 then opens a connection for Client 2. The EOS Godot
extension [13] was implemented in a way, that once a connection was opened in
mesh mode, it would also instruct Client 1 to send its own connection request
to Client 2. After both sides complete these steps, the mesh link between the
clients is established, and they can start communicating (Appendix: B).

22

Figure 11: EOS testing interface, Mesh 2 succeeded in establishing a connection

After I finished implementing the EOS network mesh, I verified it using the
same test environment that I had already used for the ENet network mesh.
Once I confirmed that everything behaved correctly, I asked the programming
lead to review the changes. After getting approval, I began integrating the
mesh into the main project on a separate branch. This step required a lot of
work. It was not enough to add the new mesh logic. The entire codebase had to
be updated to work with the new CommunicationLineSystem. This meant

23

removing all references to the multiplayer API and replacing every RPC call with
a call through the new CommunicationLine. Only after these changes were
completed was I able to test the mesh inside the real project. At first, everything
seemed to work. However, it quickly became clear that voice chat did not work
with the EOS mesh. A look into the debug tools showed that no peers were
connected to the voice chat system on the client. The project uses a proximity
voice chat feature, and this system uses its own network package handling.
Because of this, it must run its own mesh. This was already the case before my
work. One peer-to-peer connection is used for gameplay data, and another one
is used for the voice chat. For the game, this means at least two meshes will
run in parallel. Even after extensive debugging, it was challenging to identify
the cause of the problem. I was then instructed to isolate the issue in a smaller
example project, which is shown in figure 10. This example only provided a
simple UI that allowed me to create a mesh step by step. With one mesh,
everything worked without any issues. The interesting behaviour appeared only
when creating a second mesh. Figure 10 shows the peers connected in each mesh,
highlighted in red. Client 1, which also acts as the server, correctly registered
Client 2’s peer in the second mesh. However, Client 2 never showed Client 1 as
a peer. This meant the connection was not registered on the MultiplayerPeer
of Client 2, and therefore, the second mesh was incomplete (Appendix: C).

I systematically debugged the code base to identify where the problem occurred.
After confirming that the issue was not caused by the GDScript code used in my
testing environment, I investigated the EOS Godot Extension itself [13]. While
stepping through the extension, I found that Client 1 was correctly sending a
connection request to Client 2, but the packet never arrived on the other side.
The most likely explanation is that the EOS SDK, on which the extension is
built, processes the packet internally and never hands it over to the extension.
As a result, the MultiplayerPeer on Client 2 never receives the request and
cannot register the connection, preventing communication between the peers.
Since I could not determine the exact root cause, I implemented a workaround
by modifying the extension in C++. Client 1 now sends several connection
requests to Client 2 until it receives confirmation that the connection has been
established or it runs out of reattempts. As shown in figure 11, the workaround
functions as intended and the second mesh successfully registers the peer con-
nection (Appendix: D). After implementing the workaround, I compiled the
EOS Godot Extension to generate a new DLL and imported it into the main
project. With these changes in place, the voice chat system started working
again, and all peers were correctly registered in the debugging tools. This con-
firmed that the workaround was effective and that both meshes, including the
one used for voice over IP, were fully operational.

24

7 Evaluation

The evaluation of this project focuses on functional correctness and practical
performance implications of replacing Godot’s built-in MultiplayerAPI with
the CommunicationLineSystem and introducing full peer-to-peer network
meshes using ENet and Epic Online Services (EOS). Since the work was car-
ried out within an active production environment, the evaluation emphasises
validation through testing and integration rather than synthetic benchmarks.

Functional correctness was validated using a dedicated test project that mirrored
the networking setup of the studio’s current prototype. The test scene allowed
up to four clients to connect simultaneously, each controlling an individual player
object with six degrees of freedom. Player movement, authority handling, and
state synchronisation behaved consistently before and after the refactor. In ad-
dition, a CompositeNodeModule was used to periodically transmit values of
all supported synchronised data types across the network. A debugging interface
displayed the received values for each client, and no desynchronisation or missed
updates were observed during testing. This confirms that the Communica-
tionLineSystem successfully replaced Godot’s RPC-based synchronisation for
the tested scenarios.

Authority handling was preserved through the introduction of a bitmask-based
system integrated into the CommunicationLineSystem. State updates and
input processing were restricted to the designated authority peer, while remote
calls were routed only to peers matching the relevant bitmask. Newly exposed
helper functions allowed GDScript code to perform authority checks without re-
lying on Godot’s built-in multiplayer helpers. In practice, this approach proved
sufficient and did not introduce ambiguity or inconsistent behaviour during test-
ing.

The network mesh implementations were verified for both ENet and EOS. For
ENet, a signalling server distributed IP addresses, ports, and peer ID‘s, allowing
each client to establish direct peer-to-peer connections with all others. Direct
remote calls between non-server clients succeeded, confirming that communica-
tion no longer depended on server relaying. For EOS, mesh connections were
established using EOS without the need for a signalling server. A limitation
was discovered when running multiple meshes in parallel, which prevented peer
registration in secondary meshes. This issue was resolved through a workaround
implemented in the EOS Godot extension, after which both gameplay and voice
chat meshes functioned correctly.

While no quantitative latency or bandwidth measurements were conducted, the
architectural implications are clear. In the previous client—server model, client-
to-client communication required an additional hop through the server. The
mesh-based approach reduces this to a single hop, lowering latency and re-
ducing server load. Formal performance benchmarking under adverse network
conditions is left for future work.

25

Integrating the new system into the main project required replacing all remain-
ing uses of Godot’s MultiplayerAPI, including RPC calls, authority checks
and cases where the MultiplayerSpawner or MultiplayerSynchronizer was
used. Although this migration required significant effort, the resulting codebase
is more modular and less dependent on Godot’s scene structure. The ability to
use CommunicationLines outside the SceneTree improves code reuse and
architectural flexibility.

Overall, the evaluation shows that the project achieved its primary goals. The
CommunicationLineSystem fully replaced Godot’s built-in multiplayer frame-
work for the tested use cases, enabled direct peer-to-peer communication through
network meshes, and integrated successfully with both ENet and EOS into the
main project. While the solution introduces additional complexity, it provides
the flexibility required for the studio’s cooperative multiplayer game.

Ultimately, the game was tested during a studio play session attended by the
whole team. The team successfully connected and completed a full playthrough.
While in previous playtests the multiplayer connection seemed unstable and led
to disconnects of single clients, the refactored version increased stability and
ran better than in previous tests. Unfortunately, the stability is still not good
enough. In later playtests, the team experienced further connection issues. The
cause of these problems doesn’t necessarily need to be the newly introduced
changes. However, they can be, so further debugging and stress testing are
required in order to create a multiplayer experience as stable as possible.

8 Conclusion

This individual project, carried out in collaboration with Chasing Carrots, has
been an immensely valuable and insightful learning experience. I am proud
to present the results in this report and to have contributed meaningfully to
the studio’s ongoing development efforts. For me, this project was an excep-
tional opportunity to dive deeper into the world of network code for multiplayer
games. I explored various network topologies, including classic client-server ar-
chitectures and full-mesh networks, and implemented both approaches myself.
Working closely with the Godot Engine’s source code as well as with internal
studio code significantly strengthened my ability to read, understand, and work
within large-scale codebases written by others.

Throughout the project, I also learned to handle frustration and remain per-
sistent—especially during long debugging sessions that sometimes lasted days
before revealing the actual underlying issue. A particularly memorable part of
the work involved the Godot EOS Extension. It showed me how open-source
projects, while powerful, can sometimes be prone to unexpected bugs. The
workaround I implemented ultimately solved the issue, though it was more of a
temporary, "hacky” fix than the clean solution I would aim for in the long term.
If time permits, I intend to create a detailed problem description and proper

26

documentation of the fix, and share them with the extension’s main author to
collaborate on a more robust solution.

While the new game at Chasing Carrots is still far from finished, I am genuinely
pleased to have contributed to its development. Future steps will include stress-
testing the new networking framework to evaluate how it handles large amounts
of synchronised data and how it behaves under heavy latency or packet-loss
conditions. Overall, I am very grateful for the opportunity to collaborate with
Chasing Carrots and gain deeper insight into the world of indie game develop-
ment. I participated meaningfully in the project, and I am proud that my work
can be helpful to the studio moving forward.

27

Bibliography

[1]
2]

Chasing Carrots Godot Fork on GitHub. [Online]. Available: https://
github.com/ChasingCarrots/godot.

Custom modules in C++ - Godot Documentation. [Online]. Available:
https://docs.godotengine.org/en/stable/engine_details/architecture/
custom_modules_in_cpp.html.

W. Eddy, “Transmission Control Protocol (TCP),” Internet Engineering
Task Force, Request for Comments RFC 9293, Aug. 2022, Num Pages:
98. DOL: 10.17487/RFC9293. [Online]. Available: https://datatracker.
ietf.org/doc/rfc9293.

ENet: Reliable UDP networking library. [Online]. Available: http : //
enet.bespin.org/.

ENetConnection. [Online]. Available: https://docs.godotengine.org/
en/stable/classes/class_enetconnection.html.

ENetMultiplayerPeer - Godot Documentation. [Online]. Available: https:
//docs.godotengine.org/en/stable/classes/class_enetmultiplayerpeer.
html.

Epic Online Services (EOS) Overview - Epic Online Services Developer.
[Online]. Available: https://dev.epicgames.com/docs/epic-online-
services/eos-overview.

M. Farokhmanesh, “Unity May Never Win Back the Developers It Lost
in Its Fee Debacle,” Wired, Sep. 2023, Section: tags, 1SsSN: 1059-1028. [On-
line]. Available: https://www.wired.com/story/unity-walks-back-
policies-lost-trust/.

Godot Engine - Free and open source 2D and 3D game engine. [Ouline].
Available: https://godotengine.org/.

High-level multiplayer - Godot Documentation. [Online]. Available: https:
//docs .godotengine . org/en/stable/tutorials/networking/high_
level_multiplayer.html.

L. Juan, Godot Engine reaches 1.0, first stable release, Dec. 2014. [On-
line]. Available: https://godotengine . org/article/godot-engine-
reaches-1-0/.

License Godot Fngine, en. [Online]. Available: https://godotengine.
org/license/index.html.

D. Lourenco, EOSG - Epic Online Services for Godot, Sep. 2025. [Online].
Available: https://github.com/3ddelano/epic-online-services-
godot.

Making plugins - Godot Documentation. [Online]. Available: https://
docs . godotengine . org/en/stable/tutorials/plugins/editor/
making_plugins.html.

28

https://github.com/ChasingCarrots/godot
https://github.com/ChasingCarrots/godot
https://docs.godotengine.org/en/stable/engine_details/architecture/custom_modules_in_cpp.html
https://docs.godotengine.org/en/stable/engine_details/architecture/custom_modules_in_cpp.html
https://doi.org/10.17487/RFC9293
https://datatracker.ietf.org/doc/rfc9293
https://datatracker.ietf.org/doc/rfc9293
http://enet.bespin.org/
http://enet.bespin.org/
https://docs.godotengine.org/en/stable/classes/class_enetconnection.html
https://docs.godotengine.org/en/stable/classes/class_enetconnection.html
https://docs.godotengine.org/en/stable/classes/class_enetmultiplayerpeer.html
https://docs.godotengine.org/en/stable/classes/class_enetmultiplayerpeer.html
https://docs.godotengine.org/en/stable/classes/class_enetmultiplayerpeer.html
https://dev.epicgames.com/docs/epic-online-services/eos-overview
https://dev.epicgames.com/docs/epic-online-services/eos-overview
https://www.wired.com/story/unity-walks-back-policies-lost-trust/
https://www.wired.com/story/unity-walks-back-policies-lost-trust/
https://godotengine.org/
https://docs.godotengine.org/en/stable/tutorials/networking/high_level_multiplayer.html
https://docs.godotengine.org/en/stable/tutorials/networking/high_level_multiplayer.html
https://docs.godotengine.org/en/stable/tutorials/networking/high_level_multiplayer.html
https://godotengine.org/article/godot-engine-reaches-1-0/
https://godotengine.org/article/godot-engine-reaches-1-0/
https://godotengine.org/license/index.html
https://godotengine.org/license/index.html
https://github.com/3ddelano/epic-online-services-godot
https://github.com/3ddelano/epic-online-services-godot
https://docs.godotengine.org/en/stable/tutorials/plugins/editor/making_plugins.html
https://docs.godotengine.org/en/stable/tutorials/plugins/editor/making_plugins.html
https://docs.godotengine.org/en/stable/tutorials/plugins/editor/making_plugins.html

Multiplayer in Godot 4.0: ENet wrappers, WebRTC. [Online]. Available:
https://godotengine.org/article/multiplayer-changes-godot-4-
O-report-3/.

MultiplayerAPI - Godot Documentation. [Online]. Available: https://

docs.godotengine.org/en/stable/classes/class_multiplayerapi.
html.

MultiplayerPeer - Godot Documentation. [Online]. Available: https://
docs.godotengine.org/en/stable/classes/class_multiplayerpeer.
html.

MultiplayerSpawner - Godot Documentation. [Online]. Available: https:
//docs.godotengine.org/en/stable/classes/class_multiplayerspawner.
html.

MultiplayerSynchronizer - Godot Documentation. [Online]. Available: https:
//docs.godotengine.org/en/stable/classes/class_multiplayersynchronizer.
html.

RefCounted - Godot Documentation. [Online]. Available: https://docs.
godotengine.org/en/stable/classes/class_refcounted.html.

StringName - Godot Documentation. [Online]. Available: https://docs.
godotengine.org/en/stable/classes/class_stringname.html.

The GDEgxtension system - Godot Documentation. [Online]. Available:
https://docs.godotengine.org/en/stable/tutorials/scripting/
gdextension/index.html.

Tool: Developer Authentication - Epic Online Services Developer. [On-
line]. Available: https://dev.epicgames . com/docs/epic-account -
services/developer-authentication-tool.

“User Datagram Protocol,” Internet Engineering Task Force, Request for
Comments RFC 768, Aug. 1980, Num Pages: 3. DOI: 10.17487/RFC0768.
[Online]. Available: https://datatracker.ietf.org/doc/rfc768.

29

https://godotengine.org/article/multiplayer-changes-godot-4-0-report-3/
https://godotengine.org/article/multiplayer-changes-godot-4-0-report-3/
https://docs.godotengine.org/en/stable/classes/class_multiplayerapi.html
https://docs.godotengine.org/en/stable/classes/class_multiplayerapi.html
https://docs.godotengine.org/en/stable/classes/class_multiplayerapi.html
https://docs.godotengine.org/en/stable/classes/class_multiplayerpeer.html
https://docs.godotengine.org/en/stable/classes/class_multiplayerpeer.html
https://docs.godotengine.org/en/stable/classes/class_multiplayerpeer.html
https://docs.godotengine.org/en/stable/classes/class_multiplayerspawner.html
https://docs.godotengine.org/en/stable/classes/class_multiplayerspawner.html
https://docs.godotengine.org/en/stable/classes/class_multiplayerspawner.html
https://docs.godotengine.org/en/stable/classes/class_multiplayersynchronizer.html
https://docs.godotengine.org/en/stable/classes/class_multiplayersynchronizer.html
https://docs.godotengine.org/en/stable/classes/class_multiplayersynchronizer.html
https://docs.godotengine.org/en/stable/classes/class_refcounted.html
https://docs.godotengine.org/en/stable/classes/class_refcounted.html
https://docs.godotengine.org/en/stable/classes/class_stringname.html
https://docs.godotengine.org/en/stable/classes/class_stringname.html
https://docs.godotengine.org/en/stable/tutorials/scripting/gdextension/index.html
https://docs.godotengine.org/en/stable/tutorials/scripting/gdextension/index.html
https://dev.epicgames.com/docs/epic-account-services/developer-authentication-tool
https://dev.epicgames.com/docs/epic-account-services/developer-authentication-tool
https://doi.org/10.17487/RFC0768
https://datatracker.ietf.org/doc/rfc768

Ludography

[25] Chasing Carrots, Pressure, Mar. 2013.

[26] Chasing Carrots, Cosmonautica, Jul. 2015.

[27] Chasing Carrots, Pressure Ouverdrive, Jul. 2017.

[28] Chasing Carrots and Erabit, Halls of Torment, Sep. 2024.

[29] Chasing Carrots and The Irregular Corporation, Good Company, Mar.
2020.

[30] Kinetic Games, Phasmophobia, Sep. 2020.

[31] poncle, Vampire Survivors, Oct. 2022.

[32] Wouter van Oortmerssen, Cube, Sep. 2001.

[33] Zeekerss, Lethal Company, Oct. 2023.

30

A Appendix: ENet Showcase

Video material of the created test project, showcasing a functional ENet network
mesh with the refactored network code: ” AppendixA_ENetShowcase4.mp4”

B Appendix: EOS Showcase

Video material of the created test project, showcasing a functional EOS network
mesh with the refactored network code: ” AppendixB_EOSShowcase4.mp4”

C Appendix: EOS Failed Connection

Video material of the EOS test project showing the second network mesh will
fail to establish a connection: ” AppendixC_EOSConnectionFailed.mp4”

D Appendix: EOS Successful Connection

Video material of the EOS test project showing the second network mesh suc-
cessfully established a connection with the implemented workaround in the
EOSG Extension: ” AppendixD_EOSConnectionSuccessful.mp4”

31

	Introduction
	Chasing Carrots
	Related Work
	Godot Game Engine
	Multiplayer Technologies

	Customizing Godot for Studio Workflow
	Composite Node System
	Current Multiplayer Architecture
	Communication Line System

	Network Code Refactor
	Networking implementation in Godot
	Transitioning to the Communication Line System

	Network Mesh Implementation
	ENet Network Mesh
	EOS Network Mesh

	Evaluation
	Conclusion
	Appendix: ENet Showcase
	Appendix: EOS Showcase
	Appendix: EOS Failed Connection
	Appendix: EOS Successful Connection

